K. C. Majumdar,* S. Sarkar, P. Pal, and S. Muhuri
Department of Chemistry, University of Kalyani, Kalyani 741235, West Bengal, India
*E-mail: kcm_ku@yahoo.co.in Received October 262008 DOI 10.1002/jhet. 220
Published online 11 November 2009 in Wiley InterScience (www.interscience.wiley.com).

Abstract

4-Chloromethylthiopyrano[3,2-c][1]benzopyran-5-($2 H$-ones were refluxed with o-bromophenols in acetone in the presence of anhydrous potassium carbonate and sodium iodide to afford a number of 4-ary-loxymethylthiopyrano[3,2-c][1]benzopyan-5-($2 H$)-ones in $72-79 \%$ yields. These compounds were refluxed with tri- n-butyltin hydride and azobisisobutyronitrile in dry benzene for $7-8 \mathrm{~h}$ to give $[6,6]$ pyranothiopyrans in $76-84 \%$ yields with good diastereoselectivity. Similarly, [6,6]pyridothiopyrans were also synthesized in $70-75 \%$ yields with excellent diastereoselectivity.

J. Heterocyclic Chem., 46, 1324 (2009).

INTRODUCTION

In recent years, radical cyclization has emerged as a valuable tool for the construction of carbo- and heterocyclic compounds, including natural products [1]. An understanding of the kinetic and the structural information of these reactive intermediates paved the way for the development of modern synthetic radical chemistry [2]. There has been continuing enhanced interest in recent years in the synthesis of coumarin derivatives largely on account of their occurrence in nature $[3,4]$ and biological activity [5] viz., anthelmintic, hypnotic, insecticidal, antifungal activities, anticoagulant effect on blood, and diuretic properties. During our work on the synthesis of heterocycles by the application of sigmatropic rearrangements [6], we recently observed the unusual formation of [6,6]pyranopyrans in case of substrates containing 5-hydroxypyrimidines [7] and 3hydroxycoumarin [8], in the second Claisen rearrangement step. The generation and subsequent reactions of radicals formed from aryl halides using tri-n-butyltin hydride and azobisisobutyronitrile (AIBN) are now well established [9]. However, literature reveals only a few examples of heteroaryl radicals [10-13]. Aryl radical cyclization normally has a high 5-exo:6-endo ratio indicating stronger preference for exo cyclization compared to the alkyl radicals. However, this preference is found to be reversed in cyclizations involving stabilized radicals [14]. Recently, we have reported [15] the synthesis of
[6,6]pyranothiopyrans by the application of sequential Claisen rearrangement followed by pyridine hydrotribro-mide-mediated regioselective 6-endo cyclization. We have also reported some successful 6-endo aryl radical cyclizations by tri- n-butyltin hydride-mediated radical reaction [16]. In continuation of our studies, we became interested to examine the viability of synthesizing the [6,6]pyranothiopyran ring system by tri- n-butyltin hydride-induced radical cyclization of appropriate substrates (3a-f).

RESULTS AND DISCUSSION

4-Chloromethylthiopyrano[3,2-c][1]benzopyran-5-(2H)ones ($\mathbf{1 a - b}$) were refluxed with o-bromophenol in acetone in the presence of anhydrous potassium carbonate and sodium iodide to afford a number of 4-aryloxyme-thylthiopyrano[3,2-c][1]benzopyran-5-(2H)-ones (3a-f) (Scheme 1).

Compounds ($\mathbf{3 a}-\mathbf{f}$) were characterized from their elemental analyses and spectral data. IR spectrum of compound 3a showed carbonyl absorption at $1690 \mathrm{~cm}^{-1}$. The high-field (300 MHz) ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3a exhibited two proton doublet at $\delta 3.48$ for $-\mathrm{SCH}_{2}$, two proton doublet at $\delta 5.18$ for $-\mathrm{OCH}_{2}$, one proton triplet at $\delta 6.35$ for the vinylic proton among other signals for aromatic protons.

The substrate 3a was refluxed in dry benzene under nitrogen atmosphere with tri- n-butyl tin hydride and

Scheme 1. Reagents and condition: $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{NaI}$, dry acetone, reflux 3-5 h.

AIBN for 7 h to afford cyclic product $\mathbf{4 a}$ in 80% yield as an inseparable diastereoisomeric mixture (3:1), which was determined by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, COSY, and NOESY experiments. ${ }^{1} \mathrm{H}$ NMR spectrum of the product $4 \mathbf{a}$ displayed peaks for two $-\mathrm{SCH}_{2}$ protons at $\delta 3.23$ and 3.33, two $-\mathrm{OCH}_{2}$ protons at $\delta 3.88$ and 4.70, and two ring juncture protons at $\delta 3.25$ and 3.75 along with eight aromatic protons ($\delta 6.91-7.76$) for the major diastereoisomer, whereas minor diastereoisomer displayed peaks at $\delta 3.05$ and 3.74 for two $-\mathrm{SCH}_{2}$ protons, δ 3.93 and 5.67 for two $-\mathrm{OCH}_{2}$ protons, and $\delta 3.17$ and 3.42 for two ring juncture protons. IR spectrum of compound $4 \mathbf{a}$ also showed carbonyl absorption at 1700 cm^{-1}. The generality of the reaction was tested by subjecting five other substrates $\mathbf{3 b}-\mathbf{f}$ under the same reaction condition to give products $\mathbf{4 b - f}$ in $76-84 \%$ yields (Scheme 2).

In the course of our studies on the application of sigmatropic rearrangements for the synthesis of heterocyclic compounds, we have already noted the formation of several [6,6]pyranopyran and [6,6]pyranothiopyran ring systems [17] using sequential Claisen rearrangements. However, we failed to synthesize [6,6]pyridothiopyran ring system using the Claisen rearrangement. The aforesaid results motivated us to investigate the synthesis of [6,6]pyridothiopyran ring system by tributyl tin hydridemediated aryl radical cyclization.

The starting materials for our study 4-arylamino-methyl-7-methyl thioyrano[3,2-c]pyran-5-ones 7a-e were synthesized from 4-chloromethyl-7-methyl-thiopyr-ano[3,2-c]pyran-5-ones 5 and various substituted o-bromoanilines $\mathbf{6 a - e}$ in refluxing acetone in the presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and catalytic amount of NaI (Scheme 3).

Substrate 7a was refluxed in benzene with tributyl tin (IV) hydride in the presence of azoisobutyronitrile (AIBN) for 5 h to give compound $\mathbf{8 a}$ (70%), which was characterized from its elemental analysis and spectroscopic data. The IR spectrum of the compound 8a showed peaks at 3387 and $1682 \mathrm{~cm}^{-1}$ for secondary $\mathrm{N}-\mathrm{H}$ group and carbonyl group, respectively. The highfield ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of the product $\mathbf{8 a}$ displayed peaks for two $-\mathrm{SCH}_{2}$ protons at $\delta 2.90$ and δ 3.02, two ring juncture protons at $\delta 3.09$ and $\delta 3.65$, and two $-\mathrm{NCH}_{2}$ protons at $\delta 3.19$ and 3.33. The mass spectrum of the compound 8a also displayed a molecular ion peak at $m / z 286\left(\mathrm{M}^{+}+1\right)$. Encouraged by this result, other substrates $\mathbf{7 b} \mathbf{-}$ were also similarly treated to give tetracyclic heterocycles $\mathbf{8 b}-\mathbf{e}$ in $70-75 \%$ yields (Scheme 4).

Substrates 3b and 3c also gave diastereomeric mixtures [18] (2.5:1 and 2:1, respectively) under similar reaction conditions, whereas substrates $\mathbf{3 d}-\mathbf{f}$ and $7 \mathbf{a}-\mathbf{e}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in refluxing benzene gave the

Scheme 2. Reagents and condition: $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, dry benzene, under N_{2}, reflux $7-8 \mathrm{~h}$.

3a-f

$4 \mathrm{a}-\mathrm{f}$

Scheme 3. Reagents and reaction condition: $\mathrm{K}_{2} \mathrm{CO}_{3}$, NaI, dry acetone, reflux 4-5 h.

5

6ae
6a. $R^{1}=R^{3}=H$
6.. $R^{1}=H, R^{2}=M e$

6 c. $R^{1}=H, R^{2}=E t$
6d. $R^{1}=R^{2}=\mathrm{Me}$
6e. $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et}$

7a. $R^{1}=R^{2}=H$
7b. $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$
7c. $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Et}$
7d. $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$
7e. $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et}$
cyclized products $\mathbf{4 d}-\mathbf{f}$ and 8a-e, respectively, with 100% diastereoselectivity. The high-field ${ }^{1} \mathrm{H}$ NMR (500 MHz) of the compound $\mathbf{8 a}$ showed the two ring juncture protons at $\delta 3.09-3.12(\mathrm{dt}, 1 \mathrm{H}, J=12.1,3.5 \mathrm{~Hz})$ and δ $3.65-3.69$ (dt, 1H, $J=11.5,3.6 \mathrm{~Hz}$). The low coupling constants ($J=3.5$ and 3.6 Hz) for the ring juncture protons indicate cis-stereochemistry of the ring juncture. The cis-stereochemistry of the ring juncture is also supported by the comparison of the ${ }^{1} \mathrm{H}$ NMR data of similar compounds published earlier [17]. The stereochemistry at the ring juncture can also be surmised from the molecular models (Dreiding model), which shows a strain free cis-arrangement.

It was already established [19] that very high level of diastereoselectivity ($>50: 1$) could be obtained when the concentration of the reactants is reduced from 0.1 to 0.01 M . This observation has been attributed to the reversibility of the cyclization and decreased availability of the $\mathrm{Bu}_{3} \mathrm{SnH}$. However, no significant change in diastereoselectivity was observed when the substrates 3a-c were treated with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in refluxing benzene under a very dilute condition. Therefore, the reason behind the reduced diastereoselectivity in case of $\mathbf{3 a}-\mathbf{c}$ over the other is not clear.

The formation of products $\mathbf{4 a}-\mathbf{f}$ and $\mathbf{8 a}-\mathbf{e}$ from the substrates 3a-f and 7a-e, respectively, may easily be

Scheme 4. Reagents and reaction condition: $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, dry acetone, under N_{2}, reflux 5-8 h.

explained by the generation of an aryl radical 9 in the tri- n-butyltin hydride and azobisisobutyronitrile-mediated reaction. The aryl radical 9 may undergo cyclization by two different modes, a 6-endo trig cyclization to afford the heterocyclic radical 11 (pathway a) or a 5-exo trig cyclization to give the spiroheterocyclic radical [20] 10 (not isolated, pathway b). The possibility of the formation of heterocyclic radical 11 via spirocyclic radical 10 by a neophyl rearrangement [21] cannot be ruled out (Scheme 5).

It is known that radical cyclizations leading to sixmembered rings are usually less general than cyclization leading to five-membered rings. The six-membered ring forming reactions are also slower than five-membered ring forming reactions and are subject to competitive formation of reduced uncyclized by-products. However, appropriately substituted 5-hexenyl radicals are known to undergo 6-endo cyclization to give six-membered rings. Our noteworthy observation is that the usual oxidation [13] does not occur at the present instance, and the dihydro compounds are isolated in excellent yield with good diastereoselectivity. It is also interesting to note that six-membered heterocyclic rings are regioselectively formed in all the cases. This is an attractive and simple methodology for the synthesis of [6,6]pyranothiopyran and $[6,6]$ pyridothiopyran ring systems.

EXPERIMENTAL

Melting points were determined in an open capillary and are uncorrected. IR spectra were recorded on a Perkin-Elmer L120-000A spectrometer ($\nu_{\text {max }}$ in cm^{-1}) on KBr disks. UV absorption spectra were recorded in EtOH on a Shimadzu UV2401PC spectrophotometer ($\lambda_{\max }$ in nm). ${ }^{1} \mathrm{H}$ NMR (300 MHz , 500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra were recorded on a Bruker DPX-300 and Bruker DPX-500 spectrometer in CDCl_{3} (chemical shift in δ) with TMS as an internal standard. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at the Indian Institute of Chemical Biology, Kolkata and Bose Institute,

Scheme 5

Kolkata. Silica gel [(60-120 mesh), Spectrochem, India] was used for chromatographic separation. Silica gel G [E-Merck (India)] was used for TLC. Petroleum ether refers to the fraction boiling between 60 and $80^{\circ} \mathrm{C}$.

The starting materials $(\mathbf{1 a , b})$ and $\mathbf{5}$ for this study were prepared according to our earlier published procedure [22,23].

General procedure for the preparation of compound 3a-f. Compound ($\mathbf{1 a}, \mathbf{b}$) (1 mmol) was refluxed with several o-bromophenols ($\mathbf{2 a - c}$) (1 mmol) in acetone (100 mL) in the presence of anhydrous potassium carbonate (1g) and catalytic amount of NaI for $3-5 \mathrm{~h}$. The reaction mixture was then cooled, filtered, and the solvent was removed. The residual mass was subjected to column chromatography over silica gel using petroleum ether-ethylacetate (19:1) as eluant to give compounds 3a-f, which were then recrystallized from chloroform.

Compound 3a. Yield 75%; yellow solid; m.p. $90^{\circ} \mathrm{C}$; UV(E$\mathrm{tOH}) \lambda_{\text {max }}: 214,243,371 \mathrm{~nm} ; \operatorname{IR}(\mathrm{KBr}) v_{\text {max }}: 1690,1600,1260$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta 3.48(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}$, $\left.-\mathrm{SCH}_{2}\right), 4.99\left(\mathrm{~d}, 2 \mathrm{H}, J=1 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 6.38-6.42(\mathrm{tt}, 1 \mathrm{H}$, $J=1,6 \mathrm{~Hz},=\mathrm{CH}), 7.17-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.29-7.37(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{ArH}), \quad 7.50-7.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$; Anal. Calcd. for
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrO}_{3} \mathrm{~S}: \mathrm{C}, 56.85 \%$; H, 3.24%; Found C, 56.91%; H, 3.57%.

Compound 3b. Yield 79%; yellow solid; m.p. $138^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{EtOH}) \lambda_{\text {max }}: 209,246,355 \mathrm{~nm} ; \operatorname{IR}(\mathrm{KBr}) \nu_{\text {max }}: 1690$, 1600, $1270 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{CH}_{3}$), $2.38\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.49\left(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz},-\mathrm{SCH}_{2}\right)$, $4.97\left(\mathrm{~d}, 2 \mathrm{H}, J=1 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 6.39-6.41(\mathrm{tt}, 1 \mathrm{H}, J=1,6$ $\mathrm{Hz},=\mathrm{CH}), 7.29-7.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.51-7.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.83-7.85 (m, 1H, ArH); Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BrO}_{3} \mathrm{~S}: \mathrm{C}$, 58.74%; H, 3.96%; Found C, 59.05%; H, 3.61%.

Compound 3c. Yield 74%; yellow solid; m.p. $136^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{EtOH}) \lambda_{\text {max }}: 218,240,336 \mathrm{~nm}$; $\mathrm{IR}(\mathrm{KBr}) \nu_{\text {max }}: 1700,1600$, $1240 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MH}_{\mathrm{Z}}\right): \delta 2.43\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.46$ (d, $2 \mathrm{H}, J=6 \mathrm{~Hz},-\mathrm{SCH}_{2}$), $5.20\left(\mathrm{~d}, 2 \mathrm{H}, J=1 \mathrm{~Hz},-\mathrm{OCH}_{2}\right)$, $6.34-6.35(\mathrm{tt}, 1 \mathrm{H}, J=1,6 \mathrm{~Hz},=\mathrm{CH}), 6.83-7.61(\mathrm{~m}, 7 \mathrm{H}$, ArH); Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{~S}: \mathrm{C}, 57.83 \%$; $\mathrm{H}, 3.61 \%$; Found C, 58.04\%; H, 3.73\%.

Compound 3d. Yield 72%; yellow solid; m.p. $94^{\circ} \mathrm{C}$; UV(E$\mathrm{tOH}) \lambda_{\text {max }}: 221,243,375 \mathrm{~nm} ; \operatorname{IR}(\mathrm{KBr}) v_{\text {max }}: 1700,1590,1290$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 2.26\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.46(\mathrm{~d}$, $\left.2 \mathrm{H}, J=6 \mathrm{~Hz},-\mathrm{SCH}_{2}\right), 5.16\left(\mathrm{~d}, 2 \mathrm{H}, J=1 \mathrm{~Hz},-\mathrm{OCH}_{2}\right)$, $6.31-6.35(\mathrm{tt}, 1 \mathrm{H}, J=1,6 \mathrm{~Hz},=\mathrm{CH}), 6.84-6.87(\mathrm{~m}, 1 \mathrm{H}$,

ArH), 7.02-7.05 (m, 1H, ArH), 7.29-7.35 (m, 3H, ArH), 7.51$7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.82-7.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{~S}: \mathrm{C}, 57.83 \%$; H, 3.61%; Found C, 57.98%; H, 3.47%.
Compound $3 e$. Yield 75%; yellow solid; m.p. $122^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{EtOH}) \lambda_{\text {max }}: 216,245,359 \mathrm{~nm} ; \operatorname{IR}(\mathrm{KBr}) v_{\text {max }}: 3300,1680$, 1590, $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta 2.26(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{CH}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.45\left(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz},-\mathrm{SCH}_{2}\right)$, $5.16\left(\mathrm{~d}, 2 \mathrm{H}, J=1 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 6.30-6.33(\mathrm{tt}, 1 \mathrm{H}, J=1,6$ $\mathrm{Hz},=\mathrm{CH}), 6.84-6.86(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.01-7.03 (dd, $1 \mathrm{H}, J=2.5,9 \mathrm{~Hz}, \mathrm{ArH}$), 7.21-7.26 (m, 1H, ArH), 7.32-7.34 $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} \mathbf{H})$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BrO}_{3} \mathrm{~S}: \mathrm{C}, 58.74 \%$; H, 3.96%; Found C, 58.60%; H, 4.19\%.

Compound 3 f. Yield 73%; yellow solid; m.p. $168^{\circ} \mathrm{C}$; UV(E$\mathrm{tOH}) \lambda_{\text {max }}: 212,240,326 \mathrm{~nm} ; \operatorname{IR}(\mathrm{KBr}) v_{\text {max }}: 1720,1700,1230$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta 2.24\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.26(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{CH}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.48\left(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz},-\mathrm{SCH}_{2}\right)$, $5.00\left(\mathrm{~d}, 2 \mathrm{H}, J=1 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 6.38-6.42(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}$, $=\mathbf{C H}), 7.19-7.61(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrO}_{3} \mathrm{~S}$: C, 59.59%; H, 4.29%; Found C, 59.70%; H, 4.06%.
General procedure for the synthesis of compounds 7a-e. Compound 5 (1 mmol) was refluxed with several o-bromoanilines ($6 \mathbf{a}-\mathbf{e}$) $(1 \mathrm{mmol})$ in dry acetone $(100 \mathrm{~mL})$ in the presence of anhydrous potassium carbonate (1 g) and catalytic amount of NaI for $4-5 \mathrm{~h}$. The reaction mixture was cooled, filtered, and the solvent was removed. The residual mass was subjected to column chromatography over silica gel using petroleum ether-ethylacetate (19:1) as eluant to give compounds 7a-e.
Compound 7a. Yield: 80%; Solid, m.p. $170^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v_{\max }: 3410,1698,1596,1497 \mathrm{~cm}^{-11} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta_{\mathrm{H}} 2.21(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.28(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz})$, $4.38(\mathrm{~s}, 2 \mathrm{H}), 5.76-5.79(\mathrm{t}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 5.99(\mathrm{~s}, 1 \mathrm{H})$, 6.49-6.53 (t, 1H, $J=7.42 \mathrm{~Hz}), 6.59-6.61(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, 7.09-7.12 (t, 1H, $J=7.5 \mathrm{~Hz}), 7.35-7.37(\mathrm{~d}, 1 \mathrm{H}, J=8.04$ $\mathrm{Hz}) . \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }=361,302,245,209 \mathrm{~nm}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{SBr}$: C, 52.75%; H, 3.85\%; N, 3.85\%; Found C, 52.45%; H, 3.55%; N, 3.65%.

Compound 7b. Yield: 80%; Gummy mass. IR $(\mathrm{KBr}) \mathrm{v}_{\max }$: $3399,1698,1492 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{\mathrm{H}} 2.18$ $(\mathrm{s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 3.26-3.28(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 4.36(\mathrm{~s}$, $2 \mathrm{H}), 5.75-5.78(\mathrm{t}, 1 \mathrm{H}, J=5.86 \mathrm{~Hz}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 6.50-6.52$ (d, $1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.90-6.92$ (dd, $1 \mathrm{H}, J=8.24,1.32 \mathrm{~Hz}$), $7.20-7.21(\mathrm{~d}, 1 \mathrm{H}, J=1.16 \mathrm{~Hz})$. UV $(\mathrm{EtOH}) \lambda_{\max }=302,243$, 208 nm . Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{SBr}$: C, 53.96%; H , 4.23%; N, 3.70%; Found C, 53.66%; H, 4.53%; N, 3.40%.

Compound 7c. Yield: 75%; Solid, m.p. $125-130^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{v}_{\text {max }}: 3391,1699,1594 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta_{\mathrm{H}} 1.15-1.18(\mathrm{t}, 3 \mathrm{H}, J=7.58 \mathrm{~Hz}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.47-$ $2.52(\mathrm{q}, 2 \mathrm{H}, J=7.58 \mathrm{~Hz}), 3.28-3.29(\mathrm{~d}, 2 \mathrm{H}, J=5.88 \mathrm{~Hz})$, $4.36-4.37(\mathrm{~d}, 2 \mathrm{H}, J=1.09 \mathrm{~Hz}), 5.77-5.79(\mathrm{t}, 1 \mathrm{H}, J=5.87$ $\mathrm{Hz}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 6.56-6.58(\mathrm{~d}, 1 \mathrm{H}, J=8.26 \mathrm{~Hz}), 6.94-6.96$ (dd, $1 \mathrm{H}, J=8.26,1.98 \mathrm{~Hz}), 7.23-7.24(\mathrm{~d}, 1 \mathrm{H}, J=1.99 \mathrm{~Hz})$. UV (EtOH) $\lambda_{\max }=303,246,209 \mathrm{~nm}$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{SBr}$: C, 55.10%; H, 4.59%; N, 3.57%; Found C, 55.40%; H, 4.49%; N, 3.27%.

Compound 7d. Yield: 80%; Solid, m.p. $120^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{v}_{\text {max }}: 1711,1493 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{\mathrm{H}}$ 2.17 (s, 3H), 2.24 (s, 3H), 2.61 (s, 3H, -NMe), 3.23-3.25 (d, $2 \mathrm{H}, J=6.04 \mathrm{~Hz}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 5.92-5.95(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.91$
$(\mathrm{d}, 1 \mathrm{H}, J=8.12 \mathrm{~Hz}), 6.96-6.98(\mathrm{dd}, 1 \mathrm{H}, J=8,1.68 \mathrm{~Hz})$, $7.33(\mathrm{~d}, 1 \mathrm{H}, J=1.68 \mathrm{~Hz})$. UV (EtOH) $\lambda_{\text {max }}=356,248,205$ nm. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{SBr}$: C, 55.10%; H, 4.59\%; N, 3.57%; Found C, 54.80%; H, 4.89%; N, 3.28%.

Compound 7e. Yield: 75%; Solid, m.p. $110^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{v}_{\text {max }}: 1711,1495 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}}$ $1.17-1.20(\mathrm{t}, 3 \mathrm{H}, J=7.59 \mathrm{~Hz}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.57(\mathrm{q}$, $2 \mathrm{H}, J=7.57 \mathrm{~Hz}), 2.62(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NMe}), 3.25-3.26(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.99 \mathrm{~Hz}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 5.96-5.99(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.96(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.12 \mathrm{~Hz}), 7.0-7.02(\mathrm{dd}, 1 \mathrm{H}, J=8.15,1.9 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}$, $J=1.9 \mathrm{~Hz}) . \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }=359,299,249,215 \mathrm{~nm}$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{SBr}: \mathrm{C}, 56.16 \%$; $\mathrm{H}, 4.93 \%$; N, 3.45%; Found C, 56.36%; H, 4.63%; N, 3.15%.

General procedure for the preparation of compounds 4a-f and 8a-e by radical cyclization. A suspension of the compound $3 \mathrm{a}(0.5 \mathrm{mmol}),{ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}(0.075 \mathrm{~mL})$, and AIBN ($0.5-0.6 \mathrm{~mol}$ equiv) in dry benzene ($7-10 \mathrm{~mL}$) were refluxed for $7-8 \mathrm{~h}$ under N_{2} atmosphere. The solvent was evaporated under reduced pressure. The residue was dissolved in 10 mL of ether and stirred with 10 mL of 10% aqueous potassium fluoride for 45 min . The white precipitate separated by filtration and the aqueous phase was extracted with $\mathrm{CHCl}_{3}(3 \times 10$ mL). The combined organic extract was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residual mass after removal of the solvent was subjected to column chromatography over silica gel using pet-ether-ethyl acetate (19:1) as eluant to give cyclized products $\mathbf{4 a}$, which were then recrystallized from chloroform-petroleum ether. Similarly, other compounds 4b-f and 8a-e were also synthesized.

Compound 4a. Yield 80%; white solid; m.p. $140^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\text {max }}: 219,279 \mathrm{~nm}$; IR (KBr) $v_{\text {max }}: 2900,1700,1195$ $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): Major diastereomer: $\delta 3.23$ $\left(\mathrm{t}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz},-\mathrm{SCH}_{2}\right), 3.25(\mathrm{dt}, 1 \mathrm{H}, J=3.6,10.5 \mathrm{~Hz}$, ring juncture), $3.33\left(\mathrm{dd}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, 12.6 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 3.75$ (dt, $1 \mathrm{H}, J=3.1,11.4 \mathrm{~Hz}$, ring juncture), $3.88(\mathrm{t}, 1 \mathrm{H}, J=10.5$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 4.70\left(\mathrm{dd}, 1 \mathrm{H}, J=3.08,10.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.88-6.97$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 7.28-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.51-7.57(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{ArH}), 7.74-7.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): at $29.6,31.7,32.4,64.5,114.9,117.7,120.7,121.2,124.0$, $124.5,129.3,130.1,130.2,130.6,132.2,149.9,151.3,154.7$, and 159.5; MS m/z $322\left(\mathrm{M}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$: C, 70.81%; H, 4.35%; Found C, 71.02%; H, 4.43%. Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 3.05-3.07(\mathrm{~m}, 1 \mathrm{H})$, $3.17-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.93-3.96(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{dd}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}, 10.46 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.7,37.5,38.8$, and 69.

Compound 4b. Yield 76%; white solid; m.p. $198^{\circ} \mathrm{C}$; UV $(\mathrm{EtOH}) \lambda_{\text {max }}: 215,279 \mathrm{~nm}$; IR (KBr) $v_{\text {max }}: 2910,1700,1190$ $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): Major diastereomer: $\delta 2.19$ $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.20(\mathrm{t}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}$, $\left.-\mathrm{SCH}_{2}\right), 3.24(\mathrm{dt}, 1 \mathrm{H}, J=3.4,10.8 \mathrm{~Hz}$, ring juncture proton), $3.34\left(\mathrm{dd}, 1 \mathrm{H}, J=2.6,12.4 \mathrm{~Hz},-\mathrm{SCH}_{2}\right), 3.72(\mathrm{dt}, 1 \mathrm{H}, J=3.2$, 11.2 Hz , ring juncture proton), $3.90(\mathrm{t}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}$, $\left.-\mathrm{OCH}_{2}\right), 4.68\left(\mathrm{dd}, 1 \mathrm{H}, J=2.6,11.8 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 6.84-$ 6.89(s, 2H, ArH), 7.32-7.61 (m, 2H, ArH), 7.73-7.76 (m, 2H, $\mathrm{ArH}) ;$ MS $\mathrm{m} / \mathrm{z} 350\left(\mathrm{M}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}$, 72.0%; H, 5.14%; Found C, 72.25%; H, 5.43%. Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 2.99-3.22(\mathrm{~m}, 3 \mathrm{H})$, $3.73-3.87(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{dd}, 1 \mathrm{H}, J=3.5,10.7 \mathrm{~Hz})$.

Compound 4c. Yield 82%; white solid; m.p. $182^{\circ} \mathrm{C}$; UV (EtOH) $\lambda_{\text {max }}: 219,280 \mathrm{~nm}$; IR (KBr) $v_{\text {max }}: 2915,1710,1190$ $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): Major diastereomer: $\delta 2.43$
$\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.26\left(\mathrm{t}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz},-\mathrm{SCH}_{2}\right), 3.27(\mathrm{dt}, 1 \mathrm{H}$, $J=3.4,10.7 \mathrm{~Hz}$, ring juncture proton), 3.35 (dd, $1 \mathrm{H}, J=2.5$, $\left.12.2 \mathrm{~Hz},-\mathrm{SCH}_{2}\right), 3.74(\mathrm{dt}, 1 \mathrm{H}, J=3.5,11.4 \mathrm{~Hz}$, ring juncture proton), 3.87 (t, $1 \mathrm{H}, J=10.7 \mathrm{~Hz},-\mathrm{OCH}_{2}$), 4.64 (dd, $1 \mathrm{H}, J=$ $\left.2.6,10.2 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 6.88-6.97$ (m, 3H, ArH), 7.14-7.35 (m, $3 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ; \mathrm{MS} m / \mathrm{z} 336\left(\mathrm{M}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$: C, 71.43%; $\mathrm{H}, 4.76 \%$; Found $\mathrm{C}, 71.62 \%$; H , 4.83%. Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ $3.00-3.22(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.93(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{dd}, 1 \mathrm{H}, J=3.4$, 10.4 Hz).

Compound 4d. Yield 82%; white solid; m.p. $182^{\circ} \mathrm{C}$; UV $(\mathrm{EtOH}) \lambda_{\text {max }}: 220,279 \mathrm{~nm}$; IR $(\mathrm{KBr}) \nu_{\max }: 2900,1700,1196$ $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.29\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$, $3.19\left(\mathrm{dd}, 1 \mathrm{H}, J=2.4,11.2 \mathrm{~Hz},-\mathrm{SCH}_{2}\right), 3.26-3.34(\mathrm{~m}, 2 \mathrm{H})$, $3.69(\mathrm{dt}, 1 \mathrm{H}, J=3.5,11.0 \mathrm{~Hz}$, ring juncture proton), $3.78(\mathrm{t}$, $\left.1 \mathrm{H}, J=10.5 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 4.61(\mathrm{dd}, 1 \mathrm{H}, J=2.1,10.0 \mathrm{~Hz}$, $\left.-\mathrm{OCH}_{2}\right), 6.78-7.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.27-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $7.51-7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ; \mathrm{MS}$ $m / z 336\left(\mathrm{M}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 71.43 \% ; \mathrm{H}$, 4.76%; Found C, 71.59%; H, 4.62%.

Compound $4 e$. Yield 84\%; white solid; m.p. $208^{\circ} \mathrm{C}$; UV $(\mathrm{EtOH}) \lambda_{\max }: 219,280 \mathrm{~nm}$; IR (KBr) $\nu_{\max }: 2900,1690,1220$ $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.29\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.43$ $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.18-3.29(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{dt}, 1 \mathrm{H}, J=3.4,10.7$ Hz , ring juncture proton), $3.77\left(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz},-\mathrm{OCH}_{2}\right)$, $4.60\left(\mathrm{dd}, 1 \mathrm{H}, J=3.2,10.4 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 6.77-7.01(\mathrm{~m}, 3 \mathrm{H}$, ArH), $7.20-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.32(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8.3 \mathrm{~Hz}$, $\mathrm{ArH}), 7.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$; MS m/z $350\left(\mathrm{M}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 72.0 \%$; H, 5.14%; Found C, 72.17%; H, 5.25%.

Compound $4 f$. Yield 77%; white solid; m.p. $214^{\circ} \mathrm{C}$; UV $(\mathrm{EtOH}) \lambda_{\max }: 219,278 \mathrm{~nm} ;$ IR $(\mathrm{KBr}) \nu_{\max }: 2910,1690,1210$ $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.18\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$, $2.26\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.13-3.30(\mathrm{~m}, 3 \mathrm{H})$, $3.66-3.71(\mathrm{dt}, 2 \mathrm{H}, J=3.6,10.7 \mathrm{~Hz}$, ring juncture proton), $3.76\left(\mathrm{t}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 4.66(\mathrm{dd}, 1 \mathrm{H}, J=2.1$, $\left.10.3 \mathrm{~Hz},-\mathrm{OCH}_{2}\right), 6.84-6.87(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{ArH}), 7.20-$ $7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.32-7.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.52(\mathrm{~s}, 1 \mathrm{H}$, ArH); MS m/z $364\left(\mathrm{M}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}$, 72.53%; H, 5.49%; Found C, 72.71%; H, 5.25%.

Compound 8a. Yield: 70%; Solid, m.p. $218^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \nu_{\max }: 3387,1682,1539 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta_{\mathrm{H}} 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.94$ (ddd, $1 \mathrm{H}, J=12.9,3.2,2.1$ $\mathrm{Hz}), 3.02-3.06(\mathrm{t}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 3.09-3.12(\mathrm{dt}, 1 \mathrm{H}, J=$ $12.1,3.5 \mathrm{~Hz}), 3.19-3.24(\mathrm{t}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}$), $3.33-3.37$ (dt, $1 \mathrm{H}, J=11.02,4.1 \mathrm{~Hz}), 3.65-3.69(\mathrm{dt}, 1 \mathrm{H}, J=11.5,3.6 \mathrm{~Hz})$, 4.02 (brs, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.81$ (s, 1H), 6.51-6.53 (dd, $1 \mathrm{H}, J=8.04$, $0.76 \mathrm{~Hz}), 6.64-6.67(\mathrm{dt}, 1 \mathrm{H}, J=7.32,1.12 \mathrm{~Hz}), 7.02-7.06(\mathrm{~m}$, $2 \mathrm{H}) . \mathrm{MS}: m / z=286(\mathrm{M}+1) ; \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }=306,255$, 232, 209 nm . Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$: $\mathrm{C}, 67.37 \%$; H , 5.26%; N, 4.91%; Found C, 67.67%; H, 4.96%; N, 5.21%.

Compound 8 b. Yield: 75%; Solid, m.p. $210^{\circ} \mathrm{C}$; IR (KBr$) v_{\max }$: 3392, 1684, $1539 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}} 2.18(\mathrm{~s}$, $3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.97(\mathrm{~m}, 1 \mathrm{H}), 3.00-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.17-$ $3.25(\mathrm{t}, 1 \mathrm{H}, J=12.35 \mathrm{~Hz}), 3.30-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.66(\mathrm{~d}, 1 \mathrm{H}$, $J=11.17 \mathrm{~Hz}$), 3.90 (brs, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 6.45-6.47(\mathrm{~d}$, $1 \mathrm{H}, J=7.77 \mathrm{~Hz}), 6.85-6.87(\mathrm{~d}, 1 \mathrm{H}, J=7.63 \mathrm{~Hz}), 6.87(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.8, 20.7, 30.8, 31.0, 35.2, 42.0, $104.3,112.9,115.0,121.9,126.8,129.3,130.5,141.7,151.7$, 158.0, 161.7. MS: $m / z=300(\mathrm{M}+1) ; \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }=308$, 257, 232, 208 nm . Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 68.23 \%$; H, 5.69%; N, 4.68%; Found C, 68.53%; H, 5.39%; N, 4.98%.

Compound 8c. Yield: 75\%; Solid, m.p. $200^{\circ} \mathrm{C}$; IR (KBr) $\nu_{\max }: 3386,1693,1545 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta_{\mathrm{H}} 1.17-1.20(\mathrm{t}, 3 \mathrm{H}, J=7.58 \mathrm{~Hz}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.50-$ $2.55(\mathrm{q}, 2 \mathrm{H}, J=7.57 \mathrm{~Hz}), 2.92-2.95(\mathrm{dd}, 1 \mathrm{H}, J=13.11,2.49$ $\mathrm{Hz}), 2.99-3.03(\mathrm{t}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 3.06-3.09(\mathrm{dt}, 1 \mathrm{H}, J=$ $12.14,3.5 \mathrm{~Hz}), 3.19-3.24(\mathrm{t}, 1 \mathrm{H}, J=12.63 \mathrm{~Hz}), 3.31-3.34$ $(\mathrm{dt}, 1 \mathrm{H}, J=10.98,4.0 \mathrm{~Hz}), 3.64-3.66(\mathrm{dt}, 1 \mathrm{H}, J=11.44$, 3.68 Hz), 3.91 (brs, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.47-6.49$ (d, $1 \mathrm{H}, J=8.63 \mathrm{~Hz}), 6.88-6.89(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}: m / z=314(\mathrm{M}+$ 1); UV (EtOH) $\lambda_{\max }=309,257,232,210 \mathrm{~nm}$. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 69.01 \% ; \mathrm{H}, 6.07 \%$; N, 4.47%; Found C, 69.31%; H, 5.87%; N, 4.19%.

Compound 8d. Yield: 70\%; Solid, m.p. $162^{\circ} \mathrm{C}$; IR (KBr) $\nu_{\max }: 1694,1463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}}$ $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.97-3.01(\mathrm{t}, 1 \mathrm{H}, J=11.09 \mathrm{~Hz})$, $3.03-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.19(\mathrm{t}, 1 \mathrm{H}, J=12.54 \mathrm{~Hz}), 3.43-3.47$ $(\mathrm{dt}, 1 \mathrm{H}, J=10.83,4.19 \mathrm{~Hz}), 3.48-3.51(\mathrm{ddd}, 1 \mathrm{H}, J=11.25$, $3.9,1.3 \mathrm{~Hz}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.53-6.55(\mathrm{~d}, 1 \mathrm{H}, J=8.37 \mathrm{~Hz})$, $6.88-6.89(\mathrm{~d}, 1 \mathrm{H}, J=1.78 \mathrm{~Hz}), 6.95-6.97(\mathrm{dd}, 1 \mathrm{H}, J=8.31$, $1.84 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.8, 20.6, 30.9, 31.0, $35.8,39.3,50.7,104.3,111.8,112.9,123.2,125.9,129.5$, 130.4, 143.8, 151.9, 158.0, 161.7. MS: $m / z=314(\mathrm{M}+1)$; UV (EtOH) $\lambda_{\max }=309,260,208 \mathrm{~nm}$. Anal, Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 69.01 \% ; \mathrm{H}, 6.07 \%$; $\mathrm{N}, 4.47 \%$; Found C , 69.29%; H, 6.28%; N, 4.25%.

Compound 8 e. Yield: 70\%; Solid, m.p. $140^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \nu_{\max }: 1700,1463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}}$ $1.18-1.21(\mathrm{t}, 3 \mathrm{H}, J=7.59 \mathrm{~Hz}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.56(\mathrm{q}$, $2 \mathrm{H}, J=7.59 \mathrm{~Hz}$), 2.88-2.90 (ddd, $1 \mathrm{H}, J=12.8,3.16,2.0$ $\mathrm{Hz}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.98-3.02(\mathrm{t}, 1 \mathrm{H}, J=11.08 \mathrm{~Hz}), 3.05-3.08$ $(\mathrm{dt}, 1 \mathrm{H}, J=12.08,3.4 \mathrm{~Hz}), 3.15-3.20(\mathrm{t}, 1 \mathrm{H}, J=12.53 \mathrm{~Hz})$, $3.43-3.47(\mathrm{dt}, 1 \mathrm{H}, J=10.87,4.2 \mathrm{~Hz}), 3.49-3.52$ (ddd, $1 \mathrm{H}, J$ $=11.2,2.76,1.2 \mathrm{~Hz}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 6.56-6.58(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.34 \mathrm{~Hz}), 6.90-6.91(\mathrm{~d}, 1 \mathrm{H}, J=1.87 \mathrm{~Hz}), 6.98-7.00(\mathrm{dd}, 1 \mathrm{H}$, $J=8.4,1.99 \mathrm{~Hz}) . \mathrm{MS}: m / z=328(\mathrm{M}+1) ; \mathrm{UV}(\mathrm{EtOH})$ $\lambda_{\max }=308,262,231$, 208 nm . Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$: C, 69.72%; H, 6.42%; N, 4.28%; Found C, 69.45%; H, 6.22%; N, 4.50%.

Acknowledgment. The authors thank the CSIR (New Delhi) for financial assistance. They are thankful to Dr. A. Dutta of the Medicinal Chemistry Department, University of Kansas for spectral analyses of compound $\mathbf{4 a}$. Three of them S.M., S.S., and P.P. are grateful to the CSIR for their Research Fellowships.

REFERENCES AND NOTES

[1] (a) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon: New York, 1986; (b) Curran, D. P. Synthesis 1988, 417; (c) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem Rev 1991, 91, 1237; (d) Renaud, P.; Sibi, M., Eds. Radicals in Organic Synthesis, Vol. 1, 2; Wiley-VCH: Weinheim, 2001; (e) Majumdar, K. C.; Basu, P. K. Heterocycles 2002, 57, 2413.
[2] (a) Baldwin, J. E. J Chem Soc Chem Commun 1976, 734; (b) Cekovic, Z. Tetrahedron Lett 1972, 13, 749; (c) Curran, D. P.; Chang, C. T. J Org Chem 1989, 54, 3140; (d) Studer, A.; Amerin, S. Synthesis 2002, 835.
[3] (a) Dean, F. M. Naturally Occurring Oxygen Ring Compounds; Butterworths: London, 1963; (b) Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural Coumarins, Occurance, Chemistry and Biochemistry; Wiley Interscience: New York, 1982; (c) Wawzonek, S. In Heterocyclic Compounds; Elderfield, R. C., Ed.; Wiley: New York,

1951; Vol. 2, p 176; (d) Staunton, J. In Comprehensive Organic Chemistry; Sammes, P. G., Ed.; Pergamon Press: Oxford, 1979; Vol. 4, p 646; (e) Hepworth, J. D. In Comprehensive Heterocyclic Chemistry; Boulton, A. J., Mckillop, A., Eds.; Pergamon Press: Oxford, 1984; Vol. 3, p 1799.
[4] (a) Soine, T. J Pharm Sci 1964, 53, 231; (b) Lauger, V. P.; Martin, H.; Muller, P. Helv Chim Acta 1994, 27, 892; (c) Deana, A. A. J Med Chem 1983, 26, 580; (d) Gordon, M.; Grover, S. H.; Stothers, J. B. Can J Chem 1973, 51, 2092.
[5] (a) Feur, G. In Progress in Medicinal Chemistry; Ellis, G. P., West, G. B., Eds.; North-Holland Publishing Company: New York, 1974; (b) Kitagawal, H.; Iwaki, R.; Yanagi, B.; Sato, T. J Pharm Soc Jpn 1956, 76, 186; (c) Burger, A. In Burger's Medicinal Chemistry; Wolff, M. E., Ed.; Wiley Interscience: New York, 1995.
[6] Majumdar, K. C.; Balasubramanium, K. K.; Thyagarajan, B. S. J Heterocycl Chem 1973, 10, 159.
[7] Majumdar, K. C.; Das, U. J Org Chem 1998, 63, 9997.
[8] Majumdar, K. C.; Chatterjee, P.; Saha, S. Tetrahedron Lett 1998, 39, 7147.
[9] (a) Ishibashi, H.; Ohata, K.; Niihara, M.; Sato, T.; Ikeda, M. J Chem Soc Perkin Trans 1 2000, 547; (b) Parsons, A. F.; Williams, D.A. J. Tetrahedron 2000, 56, 7217.
[10] (a) Shankaran, K.; Solan, C. P.; Snieckus, V. Tetrahedron Lett 1985, 26, 6001; (b) Solan, C. P.; Cuevas, J. C.; Quesnelle, C.; Snieckus, V. Tetrahedron Lett 1988, 29, 4685; (c) Jones, K.; Willkinson, J. A. J Chem Soc Chem Commun 1992, 1767.
[11] (a) Snieckus, V. Bull Soc Chim Fr 1988, 67; (b) Harrowven, D. C.; Browne, R. Tetrahedron Lett 1994, 35, 3501.
[12] (a) Tsuge, O.; Hatta, T.; Tsuchiyama, H. Chem Lett 1998, 155; (b) Fiumana, A.; Jones, K. Tetrahedron Lett 2000, 41, 4209; (c) Sundberg, R. J.; Cherney, R. J. J Org Chem 1990, 55, 6028.
[13] Rosa, A. M.; Lobo, A. M.; Branco, P. S.; Prabhakar, S.; Pereira, A. M. D. L. Tetrahedron 1997, 55, 269.
[14] (a) Ishibashi, H.; Kato, I.; Takeda, Y.; Kogure, M.; Tamura, O. Chem Commun 2000, 1527; (b) Ponaras, A. A.; Zaim, O. Tetrahedron Lett 2000, 41, 2279.
[15] Majumdar, K. C.; Kundu, U. K.; Ghosh, S. K. Org Lett 2002, 4, 2629.
[16] (a) Majumdar, K. C.; Mukhopadhyay, P. P. Synthesis 2003, 99; (b) Majumdar, K. C.; Mukhopadhyay, P. P. Synthesis 2003, 920; (c) Majumdar, K. C.; Basu, P. K.; Mukhopadhyay, P. P.; Sarkar, S.; Ghosh, S. K.; Biswas, P. Tetrahedron 2003, 59, 2151; (d) Majumdar, K. C.; Sarkar, S. Synth Commun 2004, 34, 2873; (e) Majumdar, K. C.; Debnath, P.; Chattopadhyay, S. K. Synth Commun 2008, 38, 1768; (f) Majumdar, K. C.; Biswas, A.; Mukhopadhyay, P. P. Synthesis 2003, 2385; (g) Majumdar, K. C.;Mukhopadhyay, P. P.; Biswas, A. Tetrahedron Lett 2005, 46, 6655.
[17] (a) Majumdar, K. C.; Pal, A. K. J Sulfur Chem, in press; (b) Majumdar, K. C.; Kundu, N. J Heterocycl Chem 2008, 45, 1039.
[18] (a) Majumdar, K. C.; Muhuri, S. Synthesis 2006, 2725; (b) Majumdar, K. C.; Jana, M. Synth Commun 2007, 37, 1735.
[19] (a) Enholm, E. J.; Prasad, E. J.; Kinter, K. S. J Am Chem Soc 1991, 113, 7784; (b) Enholm, E. J.; Kinter, K. S. J Org Chem 1995, 60, 4850.
[20] Ishibashi, H.; Kawanami, H.; Nakagawa, H.; Ikeda, M. J Chem Soc Perkin Trans 1 1997, 2291.
[21] Abeywickrema, A. N.; Beckwith, A. L. J.; Gerba, S. J Org Chem 1987, 52, 4072.
[22] Majumdar, K. C.; Ghosh, S. K. Tetrahedron Lett 2002, 43, 2115.
[23] Majumdar, K. C.; Kundu, U. K.; Ghosh, S. J Chem Soc Perkin Trans 1 2002, 2139.

